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Critical behavior of crisis-induced transition to spatiotemporal chaos in parameter space
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In previous works we reported a transition mechanism from a temporal chaos~TC! to spatiotemporal chaos
~STC! through a crisis due to a collision to a saddle steady wave~SSW!. However, the transition also displays
as a critical phenomenon in parameter space. In the present work the time variations of mode interaction
energy,dEk

I (t), of the perturbation wave~PW! with its carrier SSW are calculated. In the TC state in all the
dimensions the motion is dominated by negativedEk

I (t). With variation of the parameter in one dimension
dEk51

I (t) becomes smaller and smaller while statistically more balanced in its negative and positive values.
The critical parameter point for the crisis is right at the place where the time-averaged negative and positive
dEk51

I (t) are equal. A power-law behavior is observed when approaching to the point. After the crisis in the
STC state the motion with positivedEk51

I (t) suddenly becomes much stronger than that with negative ones. In
addition, it is shown that stable orbit of the SSW is a boundary of the PW motion, it behaves like a potential
well that constrains the PW motion.

DOI: 10.1103/PhysRevE.63.016218 PACS number~s!: 05.45.2a, 41.20.Jb, 47.27.2i, 52.35.2g
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I. INTRODUCTION

It is widely accepted that turbulence is a determinis
phenomenon, it can be investigated from the point of view
a dynamical system. However, as pointed out by M.C. Cro
considerable debate and confusion have arisen concer
the ‘‘proper’’ use of the word turbulence@1#. In nonlinear
dynamics, usually this word is not limited in the tradition
meaning in fluid dynamics, it has come to be used m
widely, more particularly for so-called spatiotemporal cha
~STC!. Indeed, one of the main purposes of studying STC
to reveal the underlying physics of turbulence, however, w
different nonlinear models various types of STC can be
served@1#, and obviously they can be attributed to differe
mechanisms. For instance, a transition to STC through in
mittency has been observed, it is a continuous process th
much reminiscent of a second-order phase transition@2#; In
three-dimensional Rayleigh-Be´nard model, the authors fin
direct transition to STC, it is shown that the time-averag
structure factor has a scaling behavior near onset@3#. Other
types of spatiotemporal disorders such as phase defect
also studied@4#. Recently we reported a transition to ST
@5–7# with the following driven/damped drift-wave equatio
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]x
52gf2e sin~x2Vt !. ~1!

In contrast to Ref.@2# in our case the transition is not
continuous process. It has been shown that onset of the
sition is through a crisis@8# due to a collision to an unstabl
orbit of a saddle steady wave~SSW!, it is likely a first-order
phase transition. Another interesting point in the observa
is a STC state after the transition shows a power-law sp
trum, ^f2& ;k2b with b'5/2. In comparison with the well-
known Kolmogorov energy spectrum;k25/3 of fully-
developed turbulence@9#, one can find that it is a power law
1063-651X/2000/63~1!/016218~6!/$15.00 63 0162
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as well, but with different index. Therefore, it is reasonab
to expect that exploring the transition mechanism of
crisis-induced STC displaying in Eq.~1! can be helpful for
understanding the physics of a fully-developed turbulenc

In Ref. @5# it has been shown that for an occurrence of t
crisis in the chosen parameters there must be a SSW s
tion, f0* (x2Vt), here the subscript indicates a steady wa
superscript indicates a saddle type. By considering the
namics of a PW on its carrier SSW we find that the collisi
of the PW chaotic attractor to an unstable orbit of the SSW
responsible for the crisis-induced transition to STC. On
other hand, the transition also displays as a critical phen
enon in parameter space. Simulation shows that it can o
only if the control parameters are beyond certain critical v
ues. Our motivation in the present work is to clarify th
physical implication of this critical phenomenon. To this e
the wave energies of different wave numberk are calculated.
In Sec. II we compare the time variations of the PW mo
energies before and after crisis in every dimensionk, includ-
ing the interaction energy between the PW and its car
SSW (dEk

I ) as well as the PW self-energy (dEk
S). In Sec. III

the time averages ofdEk
I (t) are calculated for its negativ

and positive values, respectively. It is found their relati
intensity can be a characteristic quantity for studying
critical phenomenon. Furthermore, it is shown that the sta
orbit of carrier SSW is a boundary of PW motion. Finall
Sec. IV is a discussion.

II. ENERGY OF PARTIAL WAVE BEFORE AND AFTER
THE CRISIS

In Ref. @6,7# we studied the mechanism for a crisi
induced transition from temporal chaos~TC! to STC state,
we have shown that a ‘‘pattern resonance’’ of the realiz
wave pattern with a SSW solution is responsible for trigg
ing the crisis. That is, the existence of a SSW solution i
necessary condition for the occurrence of the transition.
©2000 The American Physical Society18-1
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FIG. 1. Self-energydEk
S(t) as

a function of interaction energy
dEk

I (t) of mode k51 for V
50.65, ~a! e50.18, ~b! e50.19,
~c! e50.20. All are in a spatially
ordered state. The stable orb
~solid line with circles! and un-
stable orbit~dashed line! are also
shown, respectively.
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mentioned above, this transition also manifests as a crit
phenomenon in parameter space. For a fixedV such transi-
tion can only be observed whene is beyond a critical value
ec , despite the fact that whene,ec a SSW solution may
also exist. In other words, existence of a SSW solution d
not necessarily cause a crisis, it is not a sufficient condit
for the transition. There must be some additional physics
causes the critical phenomenon in parameter space.

To study the problem, a ‘‘wave energy’’ representation
convenient. The total ‘‘wave energy’’ in a period 2p of the
system is defined as

E~ t !5
1

2pE0

2p1

2 Ff22aS ]f

]x D 2Gdx. ~2!

Without driving e and dampingg, E(t) is a constant of
motion of Eq.~1!. In general,E(t) can show behaviors suc
as constants, periodic, and different styles of chaotic mot
SinceE depends timet only, its behaviors provide us a clu
to classify, to a certain extent, the dynamical states of
space-time dependent system, and further to study the b
cation mechanisms. However, for the present purpose
global quantity of the system is not sufficient. First of all,
mentioned above many complicated nonlinear behaviors
be explained on the hypothesis that they are the result
interaction of a SW with its PW. Therefore, energies of t
SW and PW as well as their interaction should be stud
On the other hand, among the many infinite dimensions
this space-dependent system, not all the dimensions are
cal in the onset of crisis-induced transition. Instead, e.g.,
the example in Ref.@6#, as a result of the mode-mode co
plings only one dimension with the wavenumberk51 be-
comes crucial. In this dimension the PW motion gets f
from its carrier after the crisis, while the other PW part
waves are still trapped in the carrier SSW, respectively.
these reasons, in the following we calculate the wave e
gies in respect dimensions.

Since a SW of Eq.~1! has a form off0(x2Vt), it is
convenient to analyze the problem in the framej5x
2Vt,t5t. Let us set

f~j,t !5f0~j!1df~j,t!, ~3!

and make the Fourier expansion for bothf0(j) and
df(j,t), f0(j)[(kf0,k5(kAkcos(kj1uk), df(j,t)
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[(kdfk(t)5(kbk(t)cos@kj1ak(t)#, then in every dimension
a mode energy is consisted of three parts: the self-energ
f0,k :

E0,k
S 5

1

4
~12ak2!Ak

2 , ~4!

the interaction energy betweenf0,k anddfk(t) :

dEk
I ~t!5

1

2
~12ak2!Akbk~t!cos@uk2ak~t!#, ~5!

and the self-energy ofdfk(t) :

dEk
S~t!5

1

4
~12ak2!bk

2~t!. ~6!

In these expressions,E0,k
S is a constant of motion becaus

Ak is a constant depending only on the control parame
$V,e% ~the other parametersa,0,c, f ,g are fixed!; on the
other handdEk

S(t) depends only on the PW mode amplitud
while the interaction energydEk

I (t) depends also on the
phase differenceuk2ak(t) between the modes of the SW
and PW. In the (j,t) frame the modes of SW,$Ak ,uk%, can
be calculated from the steady mode equations of Eq.~1!,
]f0 /]t50. With this SW solution the PW mode
$bk(t),ak(t)% can then be computed from the mode equ
tions of the following equation derived from Eq.~1!,

]

]t F11a
]2

]j2Gdf2V
]

]j F11a
]2

]j2Gdf1c
]

]j
df1gdf

1 f
]

]j
@f0~j!df#1 f df

]

]j
df50. ~7!

In the following we fixV50.65, and study the behaviors o
the system motion whene crosses the critical pointec
;0.20. In this parameter regime, a steady wavef0(j) is of
saddle type,f0* (j), the correspondingE0* [E(f0* ) locates
at the negative tangency slope of a hysteresis. By solving
mode equations of Eq.~7! $bk ,ak% can be obtained, and
hence obtaineddEk

S(t) anddEk
I (t).

Figures 1 show some examples in whiche is near to but
less thanec , with Fig. 1~a! e50.18, Fig. 1~b! e519, and
8-2
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FIG. 2. Self-energydEk
S(t) as a function of

interaction energydEk
I (t) of modek51 for V

50.65, e50.22.~a! transient TC state before th
crisis, ~b! asymptotic STC state after the crisi
The SO and UO are also shown.
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Fig. 1~c! e520. In all these cases no crisis happens, and t
asymptotic motion is spatially smooth, despite that the te
poral motion can be chaotic. In the plots the self-energ
dEk

S(t) as functions of the interaction energiesdEk
I (t) for

k51 are drawn, in Fig. 1~a! the motion is periodic, in Figs
1~b! and 1~c! they are temporally chaotic. The stable orb
~SO, solid line with circles! as well as the unstable orb
~UO, dashed line! of the carrier SSW are also drawn respe
tively in the corresponding plots, they are calculated by
glecting the last term in the left-hand side of Eq.~7!. As can
be seen in their definitions a self-energydEk51

S (t) is
positive-definite~becausea,0 in physics!, but an interac-
tion energydEk

I (t) can be negative or positive depending
the relative phase (uk2ak). One can see in Figs. 1 that a
orbit makes excursion to both sides ofdEk

I (t)50, and an
interesting phenomenon is that in all the plots the cente
trajectory is in the negative side. Furthermore, compar
Fig. 1~c! with Figs. 1~a! and 1~b! one can see that the orbi
of dEk51

S (t) vs dEk51
I (t) are confined to a smaller an

smaller range, in particular in the negative side, that is,
motion looks more balanced among the two sides whee
approaching to the critical pointec .

Figures 2 givedEk
S(t) vs dEk

I (t) for k51 with V
50.65,e50.22. In this case a crisis-induced transition
STC can occur, so both the transient TC period before
crisis @Fig. 2~a!# and the asymptotic STC state after the cri
@Fig. 2~b!# are given, respectively. The SO and UO are a
drawn. One can see that before the crisis in Fig. 2~a! both
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dEk51
S (t) anddEk51

I (t) are very small. In contrast, after th
crisis in Fig. 2~b! the trajectory looks extremely chaotic th
is wandering in a much larger phase space. It is very in
esting that after the crisis obviously the main part of t
trajectory shifts to the right-hand side where interaction
ergy dEk51

I (t) is positive. Furthermore, although the orb
makes random walks, it is clearly bounded by the SO of
SSW. If looking at the plot in detail, one can find that som
times the orbit seems to be reflected by the SO bound
just like an elastic ball hitting on it.

Figures 3 showdEk
S(t) vs dEk

I (t) for the same param
eters as Figs. 2, but withk52, where Fig. 3~a! is before the
crisis and Fig. 3~b! after the crisis. One can see that th
motion looks much more chaotic after the crisis than bef
it. However, different from in Figs. 2, here either before
after the crisis, the orbit almost always travels in the nega
side ofdEk52

I (t). We also notice that, like in the case ofk
51, in Figs. 3 the SO are about the boundary of the P
motion. However in this case the orbit is occasionally low
than the SO slightly, it is not clear yet whether it comes fro
computational error.

III. CRITICAL PHENOMENON IN PARAMETER SPACE
OF kÄ1 MODE AS A TIME-AVERAGED BEHAVIOR

In the last section we investigate motion of the mod
before and beyond a critical point for the transition. We fi
that beyond the critical point after the crisis all the mod
e

FIG. 3. dEk
S(t) versus dEk

I (t) of mode k
52, the same parameters as in Figs. 2.~a! before
the crisis,~b! after the crisis. The SO and UO ar
also shown.
8-3
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FIG. 4. ~a! Variation of
^dEk51

P (t)&1^dEk51
N (t)& with e

~bullet! ~the open circles give
^dEk51

S (t)&), V50.65. ~b! Its
power-law behavior when ap
proaching to e2ec . The insert
gives u^dEk51

P (t)&1^dEk51
N (t)&u

~bullet! and u^dEk51
I (t)&u ~circle!

varying with e in semi-
logarithmic plot, one can see tha
the simple averagê dEk51

I (t)&
has no trend to reach zero atec .
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behave very chaotic, however, on average onlyk51 mode
shows a remarkable change, i.e., the main part of the mo
of dEk51

I (t) is shifted to the positive side, in contrast
before the crisis wheredEk51

I (t) is mainly in the negative
domain. This result suggests an investigation for the aver
behaviors of the motion. In this context we notice that R
@3# also pointed out that time-averaged quantity can be us
in studying a transition to turbulence. However, instead
the global one, here we study the time-averaged motion
different dimensions. In particular, we make the average
dEk

I (t) respectively for their positive and negative value
they are

^dEk
P~t!&[

1

TP
( dE

k
I .0dEk

I ~t!nt,

^dEk
N~t!&[

1

TN
( dE

k
I ,0dEk

I ~t!nt,

respectively, herent is the time step,TP and TN are the
time duration for the motion with positive and negati
dEk

I (t) respectively in the computation.
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In Fig. 4~a! the summation^dEk
P(t)&1^dEk

N(t)& for
modek51 is displayed as a function ofe ~bullet!. It can be
seen in the plot that, when approaching to the critical po
ec;0.20, ^dEk51

P (t)&1^dEk51
N (t)& approaches to zero

from the negative side. After crossing the critical point wh
e.ec corresponding to the asymptotic STC stat
^dEk51

P (t)&1^dEk51
N (t)& transits to big positive values. In

the plot^dEk51
S & is also shown~open circle!. From the result

it is found that the critical transition pointec is right the
position where the interaction energydEk

I (t) has same av-
eraged intensities for its negative and positive values. Thi
in agreement with what we have observed in Figs. 1~a!–1~c!.
In contrast, if making the averagêdEk

I (t)& as a whole
~without separating the negative and positive values!, al-
though it becomes very small when near to the critical po
ec , it does not really show the tendency of crossing zero
it. The inset in Fig. 4~b! gives a semi-logarithmic plot for the
variations of u^dEk51

P (t)&1^dEk51
N (t)&u ~bullet! and

u^dEk51
I (t)&u ~open circle! with e, from which we are con-

vinced that it is the former but not the latter that crosses z
at ec .

In Fig. 4~b! we give the absolute value of^dEk51
P (t)&

1^dEk51
N (t)& as a function ofue2ecu. Each point is ob-
FIG. 5. Distributions of dEk
I (t) for V

50.65, e50.19. TC state.~a! k51, ~b! k52, ~c!
k53, ~d! k54.
8-4
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FIG. 6. Distributions of dEk
I (t) for V

50.65,e50.22. Transient TC state.~a! k51, ~b!
k52, ~c! k53, ~d! k54.
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tained by averaging the results of ten runs in the attracto
has a power-law behavior when approaching to the crit
point, u^dEk51

P (t)&1^dEk51
N (t)&u ;gue2ecu, here g

'0.047.
To compare the time-averaged motion of different mod

the distributions of interaction energiesdEk
I (t) are calcu-

lated respectively fore,ec and e.ec . Figures 5 show the
results for modesk5124 with e50.19,ec . In this param-
eter the asymptotic motion is a TC state. One can see tha
the distributions of modesk5124 are peaked in the nega
tive domain, and hence the time averages of the nega
values are stronger.

Whene.ec the asymptotic motion is in STC state, in th
case the distributions ofdEk

I (t) both before and after the
crisis are calculated. Fore50.22 the results ofk5124 are
shown in Figs. 6 for the transient period before the cris
while in Figs. 7 for the asymptotic motion after the cris
01621
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Comparing Figs. 7 with Figs. 6 one can find a remarka
change occurring in modek51. Before the crisis in Fig. 6~a!
the distribution ofdEk51

I (t) is extremely narrow, and it ha
a peak very near to zero but shifted slightly to the posit
side. The area occupied by the positive one increase
about 53% of the total distribution, compared to 45% in F
5~a!; While after the crisis in Fig. 7~a! the distribution be-
comes wider with the peak further shifted to the positi
side, the area in the positive side increases to 79%.
motion is now dominated by positive interaction energy.

In contrast, forkÞ1, either before or after the crisis th
distributions ofdEk

I (t) are peaked at the negative doma
@Figs. 6 and 7~b!–7~d!#, they all have stronger averages f
negativedEk

I (t). With increasinge for all the modes the
distribution shape changes very little in STC state. For
ample, fore50.205, 0.210, 0.215, 0.220, the proportion
area with positivedEk52

I (t) is about 0.017, 0.013, 0.026
FIG. 7. Distributions of dEk
I (t) for V

50.65, e50.22. Asymptotic STC state.~a! k
51, ~b! k52, ~c! k53, ~d! k54.
8-5
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0.017, respectively. That is, forkÞ1 modes no tendency o
increasing positive interaction energy withe is observed.

The above results indicate that whether a crisis-indu
transition to STC can occur is not only determined by
existence of a SSW solution, but also determined by
situation of the interaction between the PW and the SSW
for all the modes the motion is dominated by negat
dEk

I (t), the whole state displays as a lamina-like one. O
when approaching to a critical parameter point where, i
crucial dimensionk51, the averaged positive interaction e
ergy ^dEk

P(t)& becomes equal to the negative on
^dEk

N(t)&, a crisis may occur. After the crisis,^dEk51
P (t)&

gets much stronger than̂dEk51
N (t)&, while in the other di-

mensions still the negative ones are stronger.

IV. CONCLUSION AND DISCUSSION

In the present work the critical phenomenon in parame
space for the crisis-induced transition to STC is investiga
In the TC state in all the dimensions the PW motion ha
tendency to have negative interaction energy with the car
SSW. At the critical transition point fork51 mode the mo-
tion with positive interaction energy gets balanced with
negative one. This critical phenomenon displays as a pow
law behavior. We also show that stable orbit of the carr
SSW is a boundary of the chaotic trajectory of PW even a
the crisis, it behaves like a potential well that constrains
PW motion.

This result is consistent with our observation that when
tt.
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the TC state the motion of all the PW partial waves are w
trapped in the trough of the respective carrier SSW, wh
after the crisis thek51 PW partial wave gets free from it. To
see this fact let us notice thatdEk

I (t) depends on the phas
difference ak(t)2uk , that is, it takes a negative/positiv
value if PW partial wave is, roughly speaking, anti/in pha
with that of the SSW. This agrees with what we have seen
the well-trapped/free state of thek51 partial wave before/
after the crisis, respectively~see Figs. 6~a! and 6~b! in Ref.
@6#!.

For the present example, modek51 plays a crucial role
both in the critical phenomenon in parameter space as
cussed above and in the critical transition in time evolut
discussed in Ref.@6#. For kÞ1 modes, we did not see an
tendency to get free from their trapped states~or the relevant
sign change of the characteristic quantity!. A question is
whether this phenomenon is a special case. Concerning
problem we should like to point out thatk51 is the slowest
variable in the motion, it can slave the motion of oth
modes, therefore it is not surprising thatk51 plays the cru-
cial role, its qualitative change as a result of mode couplin
brings the global motion to a new state.
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@2# H. Chatéand P. Manneville, Phys. Rev. Lett.58, 112 ~1987!.
@3# Hao-wen Xi, Xiao-jun Li, and J.D. Gunton, Phys. Rev. Le

78, 1046~1997!.
@4# A. La Porta and C.M. Surko, Phys. Rev. Lett.77, 2678~1996!.
@5# Kaifen He, Phys. Rev. Lett.80, 696 ~1998!.
@6# Kaifen He, Phys. Rev. E59, 5278~1999!.
@7# Kaifen He, Phys. Rev. Lett.84, 3290~2000!.
@8# C. Grebogi, E. Ott, and J. A Jorke, Phys. Rev. Lett.48, 1507

~1982!.
@9# U. Frisch, Turbulence ~Cambridge University Press, Cam

bridge, 1996!.
8-6


