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Critical behavior of crisis-induced transition to spatiotemporal chaos in parameter space
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In previous works we reported a transition mechanism from a temporal €h@pgo spatiotemporal chaos
(STO) through a crisis due to a collision to a saddle steady Ww&®W\). However, the transition also displays
as a critical phenomenon in parameter space. In the present work the time variations of mode interaction
energy,éEL(t), of the perturbation waveéPW) with its carrier SSW are calculated. In the TC state in all the
dimensions the motion is dominated by negatﬁEL(t). With variation of the parameter in one dimension
6E'k:1(t) becomes smaller and smaller while statistically more balanced in its negative and positive values.
The critical parameter point for the crisis is right at the place where the time-averaged negative and positive
SE|_,(t) are equal. A power-law behavior is observed when approaching to the point. After the crisis in the
STC state the motion with positiv&{(: 1(t) suddenly becomes much stronger than that with negative ones. In
addition, it is shown that stable orbit of the SSW is a boundary of the PW motion, it behaves like a potential
well that constrains the PW motion.
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[. INTRODUCTION as well, but with different index. Therefore, it is reasonable
to expect that exploring the transition mechanism of the
It is widely accepted that turbulence is a deterministiccrisis-induced STC displaying in E¢l) can be helpful for
phenomenon, it can be investigated from the point of view ofunderstanding the physics of a fully-developed turbulence.
a dynamical system. However, as pointed out by M.C. Cross, In Ref.[5] it has been shown that for an occurrence of the
considerable debate and confusion have arisen concernimgisis in the chosen parameters there must be a SSW solu-
the “proper” use of the word turbulencil]. In nonlinear tion, ¢ (x—Qt), here the subscript indicates a steady wave,
dynamics, usually this word is not limited in the traditional superscript indicates a saddle type. By considering the dy-
meaning in fluid dynamics, it has come to be used moraamics of a PW on its carrier SSW we find that the collision
widely, more particularly for so-called spatiotemporal chaosof the PW chaotic attractor to an unstable orbit of the SSW is
(STO. Indeed, one of the main purposes of studying STC igesponsible for the crisis-induced transition to STC. On the
to reveal the underlying physics of turbulence, however, withother hand, the transition also displays as a critical phenom-
different nonlinear models various types of STC can be obenon in parameter space. Simulation shows that it can occur
served[1], and obviously they can be attributed to different only if the control parameters are beyond certain critical val-
mechanisms. For instance, a transition to STC through interdes. Our motivation in the present work is to clarify the
mittency has been observed, it is a continuous process that jghysical implication of this critical phenomenon. To this end
much reminiscent of a second-order phase transf@jnin the wave energies of different wave numkeare calculated.
three-dimensional Rayleigh-Bard model, the authors find In Sec. Il we compare the time variations of the PW mode
direct transition to STC, it is shown that the time-averagedenergies before and after crisis in every dimensioimclud-
structure factor has a scaling behavior near of8etOther  ing the interaction energy between the PW and its carrier
types of spatiotemporal disorders such as phase defects a8SW (SE}) as well as the PW self-energyy). In Sec. Il
also studied4]. Recently we reported a transition to STC the time averages ofE,(t) are calculated for its negative
[5—7] with the following driven/damped drift-wave equation, and positive values, respectively. It is found their relative
intensity can be a characteristic quantity for studying the
e P e e . critical phenomenon. Furthermore, it is shown that the stable
—+a +c—+fp—=—vyp—esinx—Qt). (1)  orbit of carrier SSW is a boundary of PW motion. Finally,
gt gtox?  OX X . . :
Sec. IV is a discussion.

In contrast to Ref[2] in our case the transition is not a Il ENERGY OF PARTIAL WAVE BEFORE AND AFTER
continuous process. It has been shown that onset of the tran- THE CRISIS

sition is through a crisi§8] due to a collision to an unstable

orbit of a saddle steady way&SW), it is likely a first-order In Ref. [6,7] we studied the mechanism for a crisis-
phase transition. Another interesting point in the observatiofinduced transition from temporal cha¢sC) to STC state,

is a STC state after the transition shows a power-law speawve have shown that a “pattern resonance” of the realized
trum, (%) ~k~# with B~5/2. In comparison with the well- wave pattern with a SSW solution is responsible for trigger-
known Kolmogorov energy spectrum-k= %3 of fully- ing the crisis. That is, the existence of a SSW solution is a
developed turbulend®], one can find that it is a power law necessary condition for the occurrence of the transition. As
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mentioned above, this transition also manifests as a criticak s, 5¢, (7)== b (n)cogké+ (1], then in every dimension,

phenomenon in parameter space. For a fieduch transi- a mode energy is consisted of three parts: the self-energy of
tion can only be observed whenis beyond a critical value ¢, :

€., despite the fact that whea<e. a SSW solution may

also exist. In other words, existence of a SSW solution does s 1 o\ p2
not necessarily cause a crisis, it is not a sufficient condition Eo,k:Z(l_ak A )
for the transition. There must be some additional physics that
causes the critical phenomenon in parameter space. the interaction energy betweefy, and 5¢,(7) :
To study the problem, a “wave energy” representation is
convenient. The total “wave energy” in a periodr2of the | 1 5
system is defined as SB(1)= 5 (1-ak)Aby(m)cog b~ aw(n)], (9
1 (amlf , [d¢)? and the self-energy of¢,(7) :
E(t)= 277Jo 2[¢> a (?x) dx. (2
s 1 2\ 2
Without driving e and dampingy, E(t) is a constant of 5EK(T)_Z(1_ak )bi(7). 6)

motion of Eq.(1). In general E(t) can show behaviors such

as constants, periodic, and different styles of chaotic motion. In these expressionEgvk is a constant of motion because
SinceE depends timé only, its behaviors provide us a clue A, is a constant depending only on the control parameters
to classify, to a certain extent, the dynamical states of thig(),e} (the other parameters<0.,f,y are fixed; on the
space-time dependent system, and further to study the bifupther handrSEE(r) depends only on the PW mode amplitude,
cation mechanisms. However, for the present purpose thighijle the interaction energyEl(7) depends also on the
global quantity of the system is not sufficient. First of all, @Sphase difference#,— e (7) between the modes of the SW
mentioned above many complicated nonlinear behaviors caghg pw. In the ¢,7) frame the modes of SWA,, 6}, can

be explained on the hypothesis that they are the results ¢fe cajculated from the steady mode equations of (.
interaction of a SW with its PW. Therefore, energies of the;  /5:—0. Wwith this SW soluton the PW mode

SW and PW as well as their interaction should be studied be(7),a(7)} can then be computed from the mode equa-
On the other hand, among the many infinite dimensions Oiions O’f the following equation derived from E€L)

this space-dependent system, not all the dimensions are criti-
cal in the onset of crisis-induced transition. Instead, e.g., for 9
the example in Ref[6], as a result of the mode-mode cou- —
plings only one dimension with the wavenumbet 1 be- a7
comes crucial. In this dimension the PW motion gets free 3 g
from its carrier after the crisis, while the other PW partial +f—[po(&)5p]+TSp—
waves are still trapped in the carrier SSW, respectively. For 23 23

these reasons, in the following we calculate the wave ener- ) ) )
gies in respect dimensions. In the following we fix(Q2=0.65, and study the behaviors of

Since a SW of Eq(1) has a form ofgy(x—Qt), it is the system motion where crosses the critical point,
convenient to analyze the problem in the frangex  ~0-20. In this parameter regime, a steady wab¢) is of

—Qt,7=t. Let us set saddle typegg (£), the correspondinges =E(¢g) locates
at the negative tangency slope of a hysteresis. By solving the

D(EN)=po(E)+ Op(£,7), (3 mode equations of EQ7) {by,a} can be obtained, and
hence obtainedE(7) and SEi(7).
and make the Fourier expansion for bothy(¢) and Figures 1 show some examples in whielis near to but
0d(&,7),  Po(§)=Zydox=2ZAcCOSkEHB),  Sp(&,7) less thane., with Fig. 1(a) €=0.18, Fig. 1b) e=19, and
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Fig. 1(c) e=20. In all these cases no crisis happens, and theisE;_,(7) and SE|_,(7) are very small. In contrast, after the
asymptotic motion is spatially smooth, despite that the temerisis in Fig. Zb) the trajectory looks extremely chaotic that
poral motion can be chaotic. In the plots the self-energiess wandering in a much larger phase space. It is very inter-
5E§(7-) as functions of the interaction energiéEL(r) for  esting that after the crisis obviously the main part of the
k=1 are drawn, in Fig. (&) the motion is periodic, in Figs. trajectory shifts to the right-hand side where interaction en-
1(b) and Xc) they are temporally chaotic. The stable orbit ergy 5EL:l(r) is positive. Furthermore, although the orbit
(SO, solid line with circles as well as the unstable orbit makes random walks, it is clearly bounded by the SO of the
(UO, dashed lineof the carrier SSW are also drawn respec-SSW. If looking at the plot in detail, one can find that some-
tively in the corresponding plots, they are calculated by netimes the orbit seems to be reflected by the SO boundary,
glecting the last term in the left-hand side of E@). As can just like an elastic ball hitting on it.

be seen in their definitions a self-energEy_,(7) is Figures 3 showsEZ(7) vs SE,(7) for the same param-
positive-definite(becausea<<0 in physic$, but an interac- eters as Figs. 2, but witk=2, where Fig. 8a) is before the
tion energysE,(7) can be negative or positive depending oncrisis and Fig. &) after the crisis. One can see that the
the relative phaseé,— ;). One can see in Figs. 1 that an motion looks much more chaotic after the crisis than before
orbit makes excursion to both sides @EL(T):O, and an it. However, different from in Figs. 2, here either before or
interesting phenomenon is that in all the plots the center offter the crisis, the orbit almost always travels in the negative
trajectory is in the negative side. Furthermore, comparingide of SE,_,(7). We also notice that, like in the case lof
Fig. 1(c) with Figs. 1a) and 1b) one can see that the orbits =1, in Figs. 3 the SO are about the boundary of the PW
of SEg_,(7) vs SE,_,(7) are confined to a smaller and motion. However in this case the orbit is occasionally lower
smaller range, in particular in the negative side, that is, théhan the SO slightly, it is not clear yet whether it comes from
motion looks more balanced among the two sides when computational error.

approaching to the critical poird; .

~ Figures 2 giveE(7) vs OB(7) for k=1 with @ = cpiricAL PHENOMENON IN PARAMETER SPACE
=0.65¢=0.22. In this case a cr|_5|s-|nduced_transmon 10 oF k=1 MODE AS A TIME-AVERAGED BEHAVIOR
STC can occur, so both the transient TC period before the

crisis[Fig. 2(a)] and the asymptotic STC state after the crisis In the last section we investigate motion of the modes
[Fig. 2(b)] are given, respectively. The SO and UO are alsdbefore and beyond a critical point for the transition. We find
drawn. One can see that before the crisis in Fig) Both  that beyond the critical point after the crisis all the modes
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behave very chaotic, however, on average datyl mode In Fig. 4@ the summation{SEf(7))+(SEQ(7)) for
shows a remarkable change, i.e., the main part of the motiomodek=1 is displayed as a function ef (bullet). It can be

of 5Ek 1(7) is shifted to the positive side, in contrast to seen in the plot that, when approachlng to the critical point
before the crisis wheréE,_,(7) is mainly in the negative €.~0.20, (SE{_,(7))+(SER_,(7)) approaches to zero
domain. This result suggests an investigation for the averagéom the negative side. After crossing the critical point when
behaviors of the motion. In this context we notice that Ref.€= & orrespondlng to the asymptotic STC states
[3] also pointed out that time-averaged quantity can be usefdloEx— 1(T)>+<5Ek 1(7)) transits to big positive values. In
in studying a transition to turbulence. However, instead ofthe plot(SEZ_,) is also showrfopen circlg. From the result
the global one, here we study the time-averaged motion i is found that the critical transition DOW is right the
different dimensions. In particular, we make the averages oposition where the interaction energj,(7) has same av-

SE|(7) respectively for their positive and negative values,eraged intensities for its negative and positive values. This is
they are in agreement with what we have observed in Figa)41(c).

In contrast, if making the averageSE,(7)) as a whole

1 (without separating the negative and positive valued-
(SER(7))= T > s ~oSE( 1) AT, though it becomes very small when near to the critical point

P « €., it does not really show the tendency of crossing zero at
it. The inset in Fig. 4b) gives a semi-logarithmic plot for the
variations of |(SEf_,(7))+(SER_,(7))| (bullety and
|(6EL_,(7))| (open circle with e, from which we are con-
vinced that it is the former but not the latter that crosses zero
respectively, hereA 7 is the time stepTp and Ty are the ate..
time duration for the motion with positive and negative In Fig. 4b) we give the absolute value dBE]_,(7))

1
(SER(T)= 7 2 sel<0fBEU AT,

SEi() respectively in the computation. +(SER_,(7)) as a function ofle—e|. Each point is ob-
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tained by averaging the results of ten runs in the attractor. IComparing Figs. 7 with Figs. 6 one can find a remarkable
has a power-law behavior when approaching to the criticathange occurring in mode= 1. Before the crisis in Fig. (&)
point, [(SEL_,(7))+(SER_1(7))| ~gle—es, here g  the distribution ofSE}_,(7) is extremely narrow, and it has
~0.047. a peak very near to zero but shifted slightly to the positive
To compare the time-averaged motion of different modesside. The area occupied by the positive one increases to
the distributions of interaction energie¥E,(7) are calcu- about 53% of the total distribution, compared to 45% in Fig.
lated respectively foe<e, and e>e.. Figures 5 show the 5(a); While after the crisis in Fig. (&) the distribution be-
results for mode&=1—4 with e=0.19<¢.. In this param- comes wider with the peak further shifted to the positive
eter the asymptotic motion is a TC state. One can see that agide, the area in the positive side increases to 79%. The
the distributions of modek=1—4 are peaked in the nega- motion is now dominated by positive interaction energy.
tive domain, and hence the time averages of the negative In contrast, fork# 1, either before or after the crisis the
values are stronger. distributions oféEL(r) are peaked at the negative domain
Whene> ¢, the asymptotic motion is in STC state, in this [Figs. 6 and ®)—7(d)], they all have stronger averages for
case the distributions ozb‘EL(r) both before and after the negative&E,'((T). With increasinge for all the modes the
crisis are calculated. Far=0.22 the results ok=1—4 are distribution shape changes very little in STC state. For ex-
shown in Figs. 6 for the transient period before the crisisample, fore=0.205, 0.210, 0.215, 0.220, the proportion of
while in Figs. 7 for the asymptotic motion after the crisis. area with positiveSE}_,(7) is about 0.017, 0.013, 0.026,
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0.017, respectively. That is, fde# 1 modes no tendency of the TC state the motion of all the PW partial waves are well
increasing positive interaction energy wi¢his observed. trapped in the trough of the respective carrier SSW, while
The above results indicate that whether a crisis-inducedfter the crisis th&=1 PW partial wave gets free from it. To

transition to STC can occur is not only determined by thesee this fact let us notice thaEj(7) depends on the phase
existence of a SSW solution, but also determined by thejifference o (7) — 6y, that is, it takes a negative/positive
situation of the interaction bgtwegn the PW and the SSW. [alue if PW partial wave is, roughly speaking, anti/in phase
for all the modes the motion is dominated by negativeyith that of the SSW. This agrees with what we have seen in
SEi(7), the whole state displays as a lamina-like one. Onlythe well-trapped/free state of the=1 partial wave before/
when approaching to a critical parameter point where, in after the crisis, respectivelisee Figs. @) and 6b) in Ref.
crucial dimensiork=1, the averaged positive interaction en- [g]).

ergy (SE{(7)) becomes equal to the negative one, For the present example, mokle-1 plays a crucial role
(SEN(7)), a crisis may occur. After the crisi$SEf_,(7))  both in the critical phenomenon in parameter space as dis-
gets much stronger thaE}_,(7)), while in the other di- cussed above and in the critical transition in time evolution

mensions still the negative ones are stronger. discussed in Refl.6]. For k#1 modes, we did not see any
tendency to get free from their trapped stdi@sthe relevant
IV. CONCLUSION AND DISCUSSION sign change of the characteristic quantith question is

- _ whether this phenomenon is a special case. Concerning the
In the present work the critical phenomenon in parameteproblem we should like to point out thit=1 is the slowest
space for the crisis-induced transition to STC is investigatedyariable in the motion, it can slave the motion of other
In the TC state in all the dimensions the PW motion has &nodes’ therefore it is not Surprising that 1 p|ays the cru-

tendency to have negative interaction energy with the carriegial role, its qualitative change as a result of mode couplings
SSW. At the critical transition point fok=1 mode the mo- brings the g|oba| motion to a new state.

tion with positive interaction energy gets balanced with the

negative one. This critical phenomenon displays as a power-

law b_ehavior. We also show th_at st_able orbit of the carrier ACKNOWLEDGMENTS
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